Gossypol Inhibits Electron Transport and Stimulates ROS Generation in Yarrowia lipolytica Mitochondria

نویسندگان

  • Anna Yu Arinbasarova
  • Alexander G Medentsev
  • Vladimir I Krupyanko
چکیده

This work studied the effect of gossypol on the mitochondrial respiratory chain of Yarrowia lipolytica. The compound was shown to inhibit mitochondrial electron transfer and stimulate generation of reactive oxygen species. The inhibition kinetics in oxidation of various substrates (NADH, succinate, α-glycerophosphate and pyruvate + malate) by isolated mitochondria was investigated. Analysis of the kinetic parameters showed gossypol to inhibit two fragments of the mitochondrial electron transfer chain: a) between coenzyme Q and cytochrome b with K(IIIi) of 118.3 μM (inhibition by the noncompetitive type), and b) at the level of exogenous NADH dehydrogenase with of K(Ii) 17.2 μM (inhibition by the mixed type).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.

Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I (NADH:ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex ha...

متن کامل

Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.

Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption b...

متن کامل

Aluminum impairs morphogenic transition and stimulates H(+) transport mediated by the plasma membrane ATPase of Yarrowia lipolytica.

The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5-1.0 mM AlK(SO(4))(2)) inhibits yeast-hypha transition. Both vanadate-sensitive H(+) transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H(+) pump was stimulated by aluminum. Furthermore, Al-treated cells showed a...

متن کامل

Bioenergetics of Yarrowia lipolytica cells grown at alkaline conditions.

Energy status of the novel alkalitolerant Yarrowia lipolytica yeast strain grown at alkaline conditions (pH 9.7) was examined. Cells grown under such severe conditions were found to preserve high respiratory activity. The oxidative phosphorylation system dominated in the energy budget of the cell. A procedure was specially design to isolate tightly coupled mitochondria from yeast cells grown at...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012